Stem cell transplantation has long stood as one of medicine’s most powerful tools, offering hope to patients with genetic disorders, immune deficiencies, and blood cancers. But it comes at a staggering cost: before healthy donor cells can take root, patients typically undergo toxic chemotherapy or radiation to destroy their own diseased bone marrow. The side effects can be devastating — infertility, organ damage, secondary cancers, and sometimes death.Now, researchers at Stanford Medicine have shown it doesn’t always have to be this way. A Phase 1 clinical trial published in Nature Medicine has demonstrated that an antibody-based treatment can safely prepare patients for a stem cell transplant without using busulfan chemotherapy or radiation. For children with Fanconi anemia, a rare genetic disorder that makes conventional transplants particularly dangerous, this represents nothing short of a medical breakthrough.Traditionally, transplants hinge on “conditioning” — a process to clear out faulty bone marrow so donor cells can settle in. Until now, that has required high doses of chemotherapy or radiation, treatments that damage DNA and leave lifelong scars.The Stanford team instead used briquilimab, an antibody that targets CD117, a protein on blood-forming stem cells. By binding to CD117, the antibody wipes out diseased stem cells without blasting the rest of the body with toxins.“We were able to treat these really fragile patients with a new, innovative regimen that allowed us to reduce the toxicity of the stem cell transplant protocol,” said Dr. Agnieszka Czechowicz, MD, PhD, assistant professor of pediatrics and co-senior author of the study.For Fanconi anemia patients, who are hypersensitive to DNA damage, eliminating busulfan and radiation could be life-saving.The Phase 1 trial enrolled three children with Fanconi anemia, each younger than 10 years old. Instead of the usual conditioning, they received a single infusion of briquilimab 12 days before transplant, followed by low-intensity immune suppression but no chemotherapy or radiation.The donor bone marrow came from their parents — genetically half-matched but specially prepared. Researchers enriched it with CD34+ stem cells while removing alpha/beta T-cells, immune cells known to trigger graft-versus-host disease.The results stunned the team. Within two weeks, the donor stem cells had taken hold. By 30 days, healthy blood production was underway. Two years later, all three children have nearly 100% donor cells in their bone marrow, far exceeding the trial’s goal of just 1%.“No one experienced graft rejection, and the outcomes were better than we had dared to expect,” Czechowicz said.This success is decades in the making. Stanford’s Dr. Irving Weissman first studied CD117 antibodies in mice nearly 20 years ago. Step by step, researchers refined the science until a clinical-grade antibody was ready for human trials.The first child to benefit was 11-year-old Ryder Baker from Texas. Before his transplant, Ryder was exhausted by his illness. “He was so tired, he didn’t have stamina,” recalled his mother, Andrea Reiley. Today, Ryder is thriving — playing soccer, enjoying pickleball, and even earning the title of “Up and Coming Player” at school.Reiley says her son takes pride in being a pioneer. “I have conversations with him about how his experience is helping doctors take better care of other kids. I think he takes a lot of pride in that too.”Why Fanconi Anemia Is So Difficult To Treat?Fanconi anemia is a genetic disorder of DNA repair. The body’s stem cells can’t fix everyday DNA damage, leading to progressive bone marrow failure. Children often develop fatigue, infections, and bruising before age 12. Without a transplant, they face life-threatening complications.But because their DNA-repair machinery is so faulty, standard chemo or radiation is especially harmful. “Right now, nearly all of these patients get secondary cancers by the time they’re 40,” Czechowicz noted.The antibody-based method offers a way out of this deadly paradox, a path to transplant without the genotoxic conditioning that accelerates cancer.How Stem Cell Anti-Body Approach Expands Donor Options For PatientsAnother innovation lies in how donor cells are prepared. For decades, 35–40% of patients never received transplants simply because they lacked a perfectly matched donor. Using half-matched donors like parents — while carefully engineering the graft to reduce complications — expands the donor pool dramatically.“We are expanding the donors for stem cell transplantation in a major way, so every patient who needs a transplant can get one,” explained Dr. Rajni Agarwal, MD, co-first author and professor of pediatric stem cell transplantation.This has profound implications not only for Fanconi anemia, but also for other inherited blood disorders like Diamond-Blackfan anemia and even some immune deficiencies.Stem cell transplants are most commonly used in blood cancers like leukemia and lymphoma. While cancer patients may still require some chemotherapy or radiation to clear malignant cells, researchers believe antibody-based conditioning could benefit those too frail for full-dose regimens — including elderly patients.Another Stanford team is already exploring whether briquilimab could be used in this vulnerable population.“We may finally have a way to treat these patients with less intensity, so it’s possible for them to get a transplant,” Agarwal said.What Challenges Still Remain?Even with this breakthrough, transplants remain grueling. Ryder and the other children spent over a month in the hospital, battling side effects like exhaustion, nausea, and hair loss. And there is the broader issue of drug availability. Briquilimab is still in clinical trials, and scaling up access will take time.Still, for families who once faced impossible odds, the difference is profound. “When I counsel families, their eyes start to shine as they think, ‘OK, we can avoid the radiation and chemo toxicity’,” Agarwal said.The Stanford team is now running a Phase 2 trial in more children with Fanconi anemia, and they plan to extend the approach to other disorders. Longer-term, researchers hope antibody-based regimens can be combined with gene editing therapies — replacing faulty genes while avoiding the toxic prep work.Czechowicz believes this is just the beginning, “We were optimistic, but we’ve been surprised by how well it’s worked. This could redefine how we think about stem cell transplantation.”